
Department of Computer Science
Campus Box 430
University of Colorado
Boulder, Colorado 80309

DISTLIB
A Library for Message-Based

Distributed Programs

Dennis Heimbigner

CU-CS-352-86 March 1988

The authors gratefully acknowledge the support of the National Science Foundation grant
#DCR-8745444 in cooperation with the Defense Advanced Research Project Agency and
the IBM Corporation.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAR 1988 2. REPORT TYPE

3. DATES COVERED
 00-00-1988 to 00-00-1988

4. TITLE AND SUBTITLE
DISTLIB: A Library for Message-Based Distributed Programs

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Colorado,Department of Computer
Science,Boulder,CO,80309

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

21

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Distlib Draft

1. Introduction and Philosophy

Distlib is a set of library routines that provides a framework for message based distri­

buted programs. It uses the stream socket facilities of Berkeley Unix 4.2 as its basis, but

provides a set of additional features to make distributed programming simpler.

This library assumes that the distributed program is actually made up of a collection of

process types instantiated on some subset of the nodes of a network. It explicitly rejects

the notion of anonymous process. Processes communicate with each other in terms of

(Node,Process-type) addresses. All communications between processes is assumed to be

in the form of messages. Messages may be variable length up to some fixed bound. User

processes are event driven and run-to-completion, which means that when a message

arrives, it is read initially by the distributed library event handle and then passed to a

user-defined procedure to be processed. When the user procedure returns, the event

handler waits to receive another message from any source. This cycle of receive-process

is repeated indefinitely.

Inter-process communication is connection-based. This means that when one process on

one node, say (Nl,Pl) wishes to communicate with another process on another (or same)

node, say, (N2,P2), it must open a connection to that process on that node and send mes-

sages over that connection. This results in the creation of a connection identifier1 (an

integer) that may be used as a handle to send to that process on that node. It is also possi­

ble to use the full handle consisting of the (node, process) address pair.

Connections are assumed to be bi-directional (i.e., readable and wtitable by the two con­

nected processes). However, the input end for each process is assumed to be under the

control of the event handler in the distributed library. User procedures are free to write

on the output end on each process using the message sending facilities of the distlib

1 For stream sockets, a connection and a stream file descriptor are equivalent. Given reliable da­
tagrams, this equivalence can be broken, and a connection is just an internal handle for a particular
(node,process) pair.

1

Distlib Draft

library.

2. Architecture

The distributed library imposes a particular structure on programs that use it. It provides

a main program and select-loop code to control event handling.

Figure 1 shows the components of a distributed program. The arrow show the flow of

data in the program. The input lines and the output lines are intended to correspond but

representing the two directions of I/0. Messages come in on the input lines and are

examined by the event handler. It then passes them to user defined code for processing.

Inputs

Process
.------------- ------------, 1

Event Handler

Outputs

------------1------~-----l------------
Figure 1. Distlib Process Structure.

2

I
I
I
I
I
I

Distlib Draft

It is normally expected that this user processing code will examine the message type and

pass it to a particular procedure to handle. When finished, the procedure will return to

the user handler and that in tum will return to the main event handler to await new mes­

sages.

Messages n1ay sent over the output connections as part of the processing performed by

the user procedures. Sending over a connection is assumed to have no effect on any mes­

sage to read over that connection.

In addition to connections, the event handler also fields two other kinds of events: other

file descriptors, and the clock. The user may register arbitrary file descriptors with the

event handler. When data is available on that descriptor, a user-defined procedure is

invoked to notify the user and allow the user program to handle the descriptor. this

might be used, for example, to respond to pseudo-teletypes, or to commands typed in on

a controlling terminal.

3. Nodes

The node database contains infom1ation about the various nodes in the network. A node

is referenced by a unique identifier (type node _tin figure 2). A collection of information

(type node_data_t in figure 2), is associated with each node. This structure records the

name of the node, the type of machine (type machine _tin figure 2), and a single word of

user-defined data.

Finally, distlib provides a pointer (this_node) to the node name for the node upon which

a process is executing.

When a process starts execution, it is expected to provide in the context record (see

below) an initial array of nodes to store in the node database. Two special node

identifiers are predefined: UNDEFINED_NODE and ALL_NODE. They have no built­

in semantics, but may be convenient as arguments to or results from functions.

3

Distlib

#defineNODE_NAME_LEN 255
typedef char NODE_NAME[NODE_NAME_LEN+ 1];

typedef int node_t;
#define UNDEFINED_NODE 0
#define ALL_NODE -1

typedef int machine_t
#define MACHINE_ UNDEFINED 0
#define MACHINE_ VAX 1
#define MACHINE_SUN 2
#define MACHINE_PYRAMID 3

typedef struct _node_data {
node_name nodename;
machine_t machine;
universal udata;
} node_data_t, *node_data_p;

extern node_t this_node;

Figure 2. Node Data Structures.

4

Draft

Distlib

extern node_t insert_node(entry);
node_data_p entry;

extern int delete_node(node);
node_tnode

extern node_t gen_first_node();

extern node_t gen_next_node(lastnode);
node_t lastnode;

extern node_data_p get_node_data(node);
node_t node;

extern int set_node_data(node,data);
node_t node; node_data_p data;

extern char *nodenan1e(node);
node_t node;

extern node_t get_node_by _name(name);
node_name name;

Figure 3. Node Access Functions.

Draft

The node database has a nun1ber of access functions (figure 3). There are functions pro­

vided for inserting and deleting nodes, stepping through the list of known nodes, access­

ing and modifying node attributes. The functions and their semantics are as follows:

insert_ node

Insert a new node entry into the database of known nodes. Return -1 if the node

already exists, otherwise insert the entry and return 0.

delete_node

Delete a node from the database of known nodes. Return -1 if the node does not

exist, otherwise delete the entry and return 0.

gen_first_node

Return the identifier of the first "real" node in the database. If no nodes exist, return

UNDEFINED_NODE.

5

Distlib Draft

gen_next_node

Given the identifier of a node in the database, return the "next" node in the database,

if there is one, else return UNDEFINED_NODE.

get_node_data

For a named node, return a pointer to the node_ data _t structure associated with that

node. If the node does not exist, return 0.

set_node _data

Modify the data associated with a node. If the node does not exist, return -1, else

return 0.

node name

Given a node identifier, this routine returns a pointer to the name of the node. It is

used mostly for providing quick access to names for debug print outs.

get_node_by _name

Given the name of a node, return its node identifier, if any. If not found, return

UNDEFINED_NODE.

4. Process Types

A database of process types is also maintained (figure 4). It is analogous to the node

database, and many of its functions and data structures are similar to those for the node

database. It should be noted that this database stores information about process types,

not individual processes. A major difference is that for processes types, the user specifies

the process type identifier.

The data associated with a process type is it name, the user-defined identifier, and a piece

of user-defined data. There is also a global variable (this _process) that records the type

of process that is running.

6

Distlib

#define PROCESS_NAME_LEN 255
typedef char PROCESS_NAME[PROCESS_NAME_LEN+ 1];

typedef int process_t;
#define UNDEFINED _PROCESS 0
#define ALL_PROCESS -1
#define SYS_DEBUG -2
#define SYS_SERVER -3

typedef struct _process_data {
process_t proctype;
process_name procname;
universal udata;

} process_data_t, *process_data_p;

extern process_t this_process;

Figure 3. Process Data Structures.

7

Draft

Distlib

extern int insert_process(entry);
process_data_p entry;

extern int delete_process(process);
process_tprocess

extern process_t gen_first_process();

Draft

extern process_t gen_next_process(lastprocess);
process_t lastprocess;

extern process_data_p get_process_data(process);
process_t process;

extern int set_process_data(process,data);
process_t process; process_data_p data;

extern char *processname(ptype);
process_t ptype;

extern process_t get_process_by _name(name);
process_name name;

Figure 5. Process Access Functions.

The access functions for the process database (figure 5) are entirely analogous to those

for the node database.

5. Connections

A database of connections is also maintained (figure 6). It is analogous to the node data­

base, and many of its functions and data structures are sitnilar to those for the node data-

base. A connection is essentially a short handle for discussing an address. An address is

a (node,process-type) pair. It is represented by the type address _t.

The following information is associated with a connection:

address

The address of the node and process that is on the other end of the connection.

8

Distlib

typedef struct _address {
node_t node;
process_t proctype;

} address_t, *address_p;

typedef int connection_t;
#define UNDEFINED_CONNECTION -1

typedef int select_e;
typedef int select_set;
#define S_UNDEFINED
#define S_READ
#define S _WRITE
#define S_EXCEPT 4
#define S_ANY

typedef int channel_e;
typedef int channel_set;
#define C_UNDEFINED
#define C_SOCKET 1
#define C_LISTENER
#define C_OTHER
#define C_ANY

typedef struct {
address_t address;
channel_e ctype;

0
1
2

(S_READ I S_ WRITE I S_EXCEPT)

0

2
4
(C_SOCKET I C_LISTENER I C_OTHER)

select_set select_modes;
select_set blocked;
universal udata;

} conn_data_t, *conn_data_p;

extern address_t this_address;

Figure 6. Connection Data Structures.

9

Draft

Distlib

extern int insert_ connection(conn_id);
connection_t conn_id;

extern void delete_connection(cid);
int cid;

extern connection_t gen_first_connection();

extern connection_t gen_next_connection(lastconn);
connection_t lastconn;

extern conn_data_p get_connection_data(conn_id);
connection_t conn_id;

extern int set_connection_data(conn_id, entry);
connection_t conn_id;
conn_data_p entry;

extern char *addr_to_str(addr);
address_p addr;

extern connection_t get_ connection_ by _address(addr);
address_p addr;

extern address_p conn_address(conn_id);
connection_t conn_id;

extern universal conn_udata(conn_id);
connection_t conn_id;

extern boolean conn_open(conn_id);
connection_t conn_id;

extern int call_to(addr);
address_p addr;

extern int call_tol(addr,tries,interval);
address_p addr;
int tries,interval;

extern void disconnect(cid);
connection_t cid;

Figure 7. Connection Access Functions.

ctype

Draft

Connections may be of several varieties (see type channel_e in figure 6). A connec-

10

Distlib Draft

tion type may be undefined, it may be a socket, it may be a listener socket, or it may

be something else. It is possible to form sets of types using bit or-ing.

select_modes

This field defines the way the connection will be handled in the main select-loop of

the library. A connection may be marked to appear in the read mask, the write

mask, or the exception mask, or any combination of those.

blocked

A connection may be temporarily blocked fron1 appearing in the select masks by

setting this field appropriately.

udata

Allow the user to associate a single piece of arbitrary data with the connection.

The functions for the connection table (figure 7) are mostly analogous to those for the

node database. There are some additional functions.

conn_ address

Return a pointer to the address _t structure associated with a specified connection.

conn_udata

Return the user data associated with a specified connection.

conn_open

Return true if the connection is open, false otherwise.

call_ to

Create a connection to a specified address. Call_ to 1 additionally allows the

specification of the number of tries and the tilne interval between retries. If the con­

nection cannot be established, return -1, else return the connection identifier. If the

connection is already established, do not open a new one.

11

Distlib Draft

disconnect

Close a connection.

6. Message Formats

Distlib provides routines to read and write messages over a connection (figure 8). Nor­

mally, distlib is the only code to use the read routines; it uses them to read and distribute

the messages to the proper user handlers. A message is assumed to be a sequence of

bytes of varying length (upto a specified maximum). It is normally assumed that mes­

sages have an integer as their first 4 bytes. This integer is assumed to be the type of the

message. Negative and zero integers are reserved to distlib. Positive integers are

extern void set_msg_type(id,str);
int id; char *str;

extern int get_msg_type(str);
char *str;

extern sendaddr(addr,str,strlen);
address_p addr;
char *str;
int strlen;

extern recvaddr(addr,str,strlen);
address_p addr;
char *str;
int strlen;

extern sendconn(conn_id,str,strlen);
connection_t conn_id;
char *str;
int strlen;

extern recvconn(conn_id,str ,strlen);
connection_t conn_id;
char *str;
int strlen;

Figure 8. Message Access Functions.

12

Distlib

assumed to be user defined. The message related routines are as follows.

set_msg_type

Draft

Given a pointer to a sequence of bytes, store (in network order) a specified message

identifier.

get_msg_type

Given a pointer to a message, extract the first four bytes and return them as an

integer in local format.

sendaddr

Given a pointer to an address (i.e., node and process type) and given a pointer and

length for a sequence of bytes, send the bytes as a message to the specified address.

On success, return the number of bytes sent. If an error occurs, return -1.

recvaddr

Given a pointer to an address (i.e., node and process type) and given a pointer and

length for a sequence of bytes, Read a message into the sequence of bytes from the

specified address. On success, return the number of bytes read. If an error occurs,

return -1.

sendconn

Given a connection identifier and given a pointer and length for a sequence of bytes,

send the bytes as a message over the specified connection. On success, return the

number of bytes sent. If an error occurs, return -1.

recvconn

Given a connection identifier and given a pointer and length for a sequence of bytes,

Read a message into the sequence of bytes from the specified connection. On suc­

cess, return the number of bytes read. If an error occurs, return -1.

13

Distlib Draft

7. Timer

Distlib provides a queue of time events for the convenience of the application. The

application may call timer _start (figure 9) to indicate that the application wishes to

receive an event some number of seconds in the future. The application may associate a

piece of arbitrary datum with the request. This datum will be given back to the applica­

tion when it is notified of the event. After an application makes an event request, if may

cancel it using timer _stop (figure 9). The specific event to cancel is determined by

matching on the value of the user-specified datum.

8. Error Reporting

extern void timer_start(seconds,datum);
int seconds; universal datum;

extern void timer_stop(datun1);
universal msg;

Figure 9. Timer Access Functions.

extern errprintf(fmt,va_alist);
char *fmt;
va_dcl;

extern _errprintf(fmt,ap);
char *fmt;
va_list ap;

extern errflush();

extern char *errperror();

Figure 10. Error Reporting Functions.

14

Distlib Draft

Distlib provides support for error handling (figure 10). It provides three basic functions:

errprintf, errflush, and errperror. The functions are as follows.

Errprintf

This is a printf-like function in that it takes a variable number of arguments. The

first argument is the format string, and the remaining arguments are the values to be

printed. Its default action is to print onto stderr.

Errflush

This functions is called to indicate the end of an error message sequence.

Errperror

Replaces perror() so that its output will be diverted to the error sink.

The application is free to replace these functions with others. For example, rather than

sending errors to standard output, the application might wish to send them to some cen-

tral logging process. Distlib itself uses these routines, so the application must be

prepared to handle distlib messages. Distlib messages are preceded by a special header

string so they may be detected and treated separately.

9. Debugging Support

Distlib provides a rudimentary set of debugging functions (figure 11). Applications may

provide messages that are tagged with a level nun1ber to indicate

severity/warning/informativeness. The following is an example of levels:

0 = no checking, also may used for true error output
1 = check process startup
2 = check gross activity flow
3 = check detailed process flow
4 = check everything

Each level includes those below it so that as the level gets higher, more and more diag­

nostics are printed. The global variable dblevel determines the level of messages to be

actually printed. Messages tagged with levels above the value in db/eve! will be

15

Distlib

extern int dblevel;

extern char *dbhdr;

extern dbprintf(level,fmt, va_alist);
int level;
char *fmt;
va_dcl

extern dbmore(level,fmt, va_alist);
int level;
char *fmt;
va_dcl

extern dbperror(msg);
char *msg;

extern dbfatal(fmt,va_alist);
char *fmt;
va_dcl

Figure 11. Debug Reporting Functions.

suppressed.

Draft

In addition, all debug output is preceded by the user-defined header string pointed to by

the global variable dbhdr.

As provided, all output from these routines is passed thru the error routines, so the error

routines may be redirected to redirect the debug output.

The debug routines consist of several routines.

dbprintf

Perform printf style output. The level tag is specified by the first argument. When

printed, the n1essage is tagged by the source node and process type.

db more

Normally, the application uses dbprintf to print out a single line of information. If

the output is to be multi-line, then each additional line should use dbmore for those

16

Distlib Draft

additional lines.

dbperror

Rather than calling perror, the application should call this function so that the output

will be diverted to the same place as other debugging output.

dbfatal

If the application detects an unrecoverable error, ti can call this routine to output it

and then do an orderly shutdown of the process.

10. Initialization

extern void distlib_init(cxt);
context_p ext;

extern int distlib_select();

Figure 12. Initialization Functions.

typedef struct {
char *this_process_name;
int msgsize;
int process_count;
process_data_p processes;
int node_count;
node_data_p nodes;
int (*process_other)();
int (*process_user_timeout)();
int (*process_user_msg)();
int (*user_listen_fron1)();
} context;

Figure 13. Context Data Structure.

17

Distlib

process_user_msg(cid,msg,msglen)
connection_t cid; char *msg; int msglen;

process_other(descriptor,modes)
int descriptor,modes;

process_user_timeout(datum)
universal datum;

user_listen_from(cid)
connection_t cid;

Figure 14. User Provided Functions.

Draft

To use distlib, the user's application code must perform to basic steps. First, it must

invoke distlib _init (see figure 12) to allow distlib to initialize it databases and to establish

an initial listening connection. Obviously, the application code must call this before cal­

ling any other distlib function. The distlib _init function takes a pointer to a context

structure (see context_t in figure 13). The context structure allows the application to pro­

vide environmental information to distlib. This information consists of data plus user

provided functions. The data items provided by a context are as follows.

This_process_name

The process type name of this process.

Msgsize

The maximum size of messages that can be received.

Process_count

A table of initial process types. Each entry in the table is of type process_ data _t.

Node_count

A table of initial nodes. Each entry in the table is of type node_ data _t.

18

Distlib Draft

In addition to the data items, the application must provide pointers to user defined func­

tions to be called by distlib when significant events occur. The effective declarations of

these functions is shown in figure 14. The semantics of these functions is as follows:

Process_user_rnsg

Whenever distlib detects that input is available on a socket channel, it uses read­

conn() to read a message from that channel. It examines the message type and if it

is a message type defined by distlib, then it is handled internally to distlib. If it is a

user-defined message type, it is passed to this routine along with the connection

identifier from which the message was read.

Process_other

When input or output or exception is detected on an "other" type connection, the

connection identifier and the modes (input, output, and exception) are passed to this

function. Distlib does no I/0 on such connections.

Process_user_timeout

The application may use the timing queue facilities (see section ?) to arrange

notification at son1e future time. If that time event arrives, then this routine is called

with the user-defined data item specified at the call to timer _start.

U ser_listen_from

When a process receives a connection request from another process, it stores the

connection and processes a system message from the other process indicating the

address of the calling process. In addition, it call this function to allow the user to

do any application specific operations for a new connection.

19

